Math 245
Spring 2022
Lecture 42

Given $\quad f(x)=\frac{x-4}{x^{2}-x-2}$

1) Y-Int $\rightarrow x=0 \rightarrow f(0)=2 \Rightarrow(0,2)$
2) x - Int $\rightarrow y=0 \rightarrow f(x)=0 \rightarrow x-4=0 \rightarrow x=4 \Rightarrow(4,0)$
3) Domain $\rightarrow x^{2}-x-2 \neq 0 \rightarrow(x-2)(x+1) \neq 0$

$$
x \neq 2, x \neq-1
$$

$$
(-\infty,-1) \cup(-1,2) \cup(2, \infty)
$$

4) V.A. $x=2, x=-1$
5)H.A. $y=0$

Deg. of rum. < Deg. of Demo

If $x=5$

$$
f(5)=\frac{5-4}{(5-2)(5+1)}=+
$$

If $x=3$
$f(3)=$
If $x=1$

$$
f(1)=\frac{1-4}{(1-2)(1+1)}==+
$$

$$
\begin{aligned}
& \text { Try } x=-2 \\
& \begin{aligned}
& f(-2)=\frac{-2-4}{(-2-2)(-2+1)} \\
&=- \\
& y=0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{x^{2}}{x^{2}+1} \\
& Y \text {-Int } \rightarrow f(0)=0 \Rightarrow(0,0) \\
& x \text {-Int } \rightarrow f(x)=0 \Rightarrow x^{2}=0 \rightarrow x=0 \Rightarrow(0,0)
\end{aligned}
$$

Domain: All Reals since $x^{2}+1 \neq 0$
V.A. None H.A. $y=\frac{1}{1} \quad$ Since Deg. of mum $_{1}=$

$$
y=1
$$

Deg. of Dino.

$$
f(-x)=\frac{(-x)^{2}}{(-x)^{2}+1}=\frac{x^{2}}{x^{2}+1}=f(x) \Rightarrow \text { even function }
$$ respect to Y-axis.

$$
f(x)=\frac{x^{2}}{x^{2}+1} \geq 0
$$

$$
f(1)=\frac{1^{2}}{1^{2}+1}=\frac{1}{2}
$$

$$
f(2)=\frac{2^{2}}{2^{2}+1}=\frac{4}{5}
$$

$$
\begin{aligned}
f(10) & =\frac{10^{2}}{10^{2}+1} \\
& =\frac{100}{101}
\end{aligned}
$$

Range $[0,1)$
find

1) $6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$
2)

$$
\begin{aligned}
7!-5! & =\underbrace{70-120}_{5040-6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=\underbrace{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}_{4920} \\
& =5 \cdot\left(\begin{array}{l}
492
\end{array}\right.
\end{aligned}
$$

3) $\frac{8!}{7!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=8$
4) $\frac{5!}{4!\cdot 1!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 1}=\frac{5}{7}=5$
5)

$$
\begin{aligned}
{ }_{6} C_{2} & =\frac{6!}{2!\cdot(6-2)!} \quad n_{r}=\frac{n!}{r!(n-r)!} \\
& =\frac{6!}{2!\cdot 4!}=\frac{6 \cdot 5 \cdot 4!}{2 \cdot 1 \cdot 4!}=15
\end{aligned}
$$

6) $\binom{6}{2}=\frac{6!}{2!\cdot(6-2)!}$

$$
\begin{aligned}
& \binom{n}{r}=\frac{n!}{r!(n-r)} \\
& \frac{2 \cdot 7}{2 \cdot 1}=\frac{15}{1}=15
\end{aligned}
$$

7) ${ }_{8} C_{3}=\frac{8!}{3!\cdot(8-3)!}=\frac{8!}{3!\cdot 5!}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{3 \cdot 2 \cdot 1 \cdot 5!}$

$$
=\frac{56}{7}=56
$$

8) $\begin{aligned}\binom{9}{4}=\frac{9!}{4!\cdot(9-4)!}=\frac{9!}{4!\cdot 5!} & =\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 5!} \\ & =\frac{9 \cdot 2 \cdot 7}{1}=126\end{aligned}$

Binomial Expansion
Two-Terms
Assume $\quad a+b \neq 0$

$$
\begin{aligned}
& (a+b)^{0}=1 \\
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{aligned}
$$

$$
(a+b)^{n}
$$

First term a^{n}, Last term b^{n} There will be $(n+1)$ terms from Left-to-right \Rightarrow Power of a decreases
 So $\quad\binom{n}{r} a^{n-r} b^{r}$ \& this is $(r+y)^{\text {th }}$ term.

$$
\begin{aligned}
& (a+b)^{3}= \\
& \binom{3}{0} a^{3}+\binom{3}{1} a^{2} b^{1}+\binom{3}{2} a^{1} b^{2}+\binom{3}{3} b^{3} \\
& 11 \\
& \binom{3}{0}=\frac{3!}{0!\cdot(3-0)!}=\frac{3!}{0!\cdot 3!}=\frac{3!}{1 \cdot 3!}=1 \\
& \binom{3}{1}=\frac{3!}{1!\cdot(3-1)!}=\frac{3!}{1!\cdot 2!}=3 \\
& \binom{3}{2}=\frac{3!}{2!\cdot(3-2)!}=\frac{3!}{2!\cdot 1!}=3 \\
& \binom{3}{3}=\frac{3!}{3!\cdot(3-3)!}=\frac{3!}{3!\cdot 0!}=1
\end{aligned}
$$

$$
\begin{aligned}
& (a+b)^{4} \\
& \binom{4}{0} a^{4} b^{0}+\binom{4}{1} a^{3} b^{1}+\binom{4}{2} a^{2} b^{2}+\binom{4}{3} a^{3} b^{3}+\binom{4}{4} a^{0} b^{4} \\
& 1 \\
& \binom{4}{2}=\frac{4!}{2!\cdot(4-2)!}=\frac{4!}{2!\cdot 2!}=\frac{4}{2 \cdot 1 \cdot 2 \cdot 21} \\
& \hline 1
\end{aligned}
$$

